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Stream Resources at Fort Riley

The Fort Riley Military Reservation is located in the Flint
Hills of northeastern Kansas between Junction City and
Manhattan. Of the 100,000 acres encompassed by Fort
Riley, neariv 70,000 acres are managed for multiple-use,
including fish and wildlife

management.

In addition to
upland bird, water-
fowl, and big game
hunting, Fort Riley
provides excellent
angling opportuni-
ties. Although many
anglers concentrate
their effort on ponds, -
streams provide a refreshing Slende
alternative by supplying fishing

opportunitics with
uncrowded conditions.
However, streams are
important for more
than providing

a place to fish.
Stream and ripar-
ian, or streamside
vegetation, resources
are used both directly
and indirectly by many
people and various wildlife
species.

B i

Healthy streams are the result of proper land management.
Proper stream and watershed management ensures high-
quality habitat for fish and wildlife.

Streams located on Fort Riley are characteristic of many
Flint Hills streams. For example, streams vary trom high-
gradient and clear water to low-gradient and muddy water
and vary in size from small strecams with infrequent flow
to large permanent-flowing streams.
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More than a dozen different streams are located on Fort

Riley, many of which are completely contained within the _ .
boundaries of Fort Riley and offer a unique opportunity :

to observe how streams function. In addition, the diversity

of streams supports a diverse aquatic community on tort

Riley.

Stream Regions

Headwaters

Most streams on
Fort Riley originate
from groundwater
springs high in
the drainage basin.
The beginning of
a stream, or headwater,
is characterized by high gra-
dient, rocky bottom, shallow
depth, and narrow width. The water flows relatively fast,
helping to maintain a cool temperature and high oxygen
concentration, which are important for fish and other
aquatic organisms.

o
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The orangethroat darter and slender madtom are common
fishes in the headwaters of Fort Riley streams and can be
found in Little Arkansas, Wind, Threemile, and Forsyth
Creeks.

Fishes that live in headwaters are adapted to life in fast-
flowing water and are often found under or around cover.
Consequently, species located in headwater streams are
smail and flat to increase survival in the fast, turbulent
flow. Most fish in these areas
feed on aquatic insects

that live in the spaces
between rocks.

have the fewest
number of species,
and the number of
fish species increases
downstream.

? -‘L
l:urﬂ'“‘ ¢




Mid-reaches
As a stream progresses, it receives input from other streams
and grows in size. The middle section of a stream is called
a mid-reach. Gradients in mid-reach areas are lower than in
headwater reaches, allowing fine particles like silt to settle
out. Unlike headwater reaches composed primarily of rif-
fles, mid-reaches have well devel-

oped pool-riffle sequences.

Most of these areas
also have well-
developed riparian
forests that

increase instream
habitat. For exam-
ple, when trees fall
into the stream they
provide cover and spawning ) C
cavities and increase area for aquatic  Creek
insect production,

aad

Little Arkansas, Wind,
and Forsyth Creeks
have good examples
of mid-reach sec-
tions on Fort Riley.
Fish communities

in mid-reaches typi-
cally contain several : : : :
different species o Mt Lower
because of the variation : T
in habitat and increased water

volume. Fish species found in riffles

are similar to those found
in headwaters, but many
new species such as
red shiners, redfin
shiners, common
shiners, black bull-
heads, and blunt-
nose minnows are
common in these
arcas because of the
abundant food supply and “
diverse habitat. Predatory fish Wind €r¢*
such as green sunfish and creek

chubs are more common in mid-reaches than in the head-
waters due to the abundance of prey species.
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Lower reaches
Gradients decrease downstream, and the stream becomes
wider and deeper. It may look like there is little cover for
fish, but below the surface, logs and large rocks provide
habitat for numerous fish species. Threemile, Sevenmile,
Wildcat, and Madison Creeks on Fort Riley are excellent
examples of lower stream reaches

characteristic of Flint Hills
streams.

Lower reaches have
many fish species.
For example, find-
ing 20 or more fish
species in a lower
reach is common.
Bluegill, largemouth
bass, white suckers, short-
head redhorse, logperch, and sucker-
mouth minnows are common fishes in lower reaches.
Because these streams flow into large rivers or reservoirs,
many large-river and reservoir fish species such as river
carpsucker and walleye have been collected in streams on
Fort Riley.

Large rivers

All streams on Fort Riley eventually flow into either the
Kansas or Republican Rivers, which border the southern
boundary of Fort Riley. Both rivers are typical midwestern
rivers characterized by broad channels with shifting-sand
bottoms.

Fishes such as smallmouth buffalo, blue sucker, and
flathead catfish are common in

large rivers. Many fishes
that live in the streams
on Fort Riley, like
red shiners and
channel catfish,

also inhabit large
rivers; however, sev-
eral species, such as
shovelnose sturgeon,
are adapted for life

oF
. . R N
in large-river habitats and do Kansas ¥
not exist in smaller streams.




Comprehensive list of fishes that occur

4 Species In Need of Conservation (SINC}Y

bState Endangered Species

“Federal Endangered Species

. . .
in Ft. Riley’s streams and rivers ' :
i Primary Habitat
! Common Name _Sclentific Name Headwater Mid-Reach Lower Reach Large River
“Sturgeons (Adipenseridac) B N e
Shovelnose sturgeon __Scaphirhynchus platorynchus - e
Gars (Lepisosteidac) = o
Longnose gar _ Lep osseus B ) X T
Shortnose gar . Lepis X - o
Mooneyes (Hiodontidae) e ) -
Goldeye Hiodon al i B T
Gizzard shad Dorosoma cepedianum T
Minnows (Cyprinidae) L
Central stoneroller Camp I X X X
Red shiner Cyprinella lutrensis - X TTTTX X
Common carp Cyprinus carpio - X
Plains minnow* .__Hybognathus placitus
Common shiner ____Luxilus cornutus - X X
kied chub® Extrarius aestivalis Vo
Redfin shiner ___Lythrurus umbratitis ) X X X
Golden shiner Notemigonus crysoleticas T
Emerald shiner ____ Notropis atherinoides
Sand shiner . Notrapis ludibundus T T X
Rosyface shiner Notropis rubellus X
___Topeka shiner Notropis topeka X ) X X
___Suckermouth minnow Phenacobius ntirabilis X X X
n redbelly dace Phoxinus erythrogaster X X X o
Bluntnose minnow __ Pimephales notatus X X X
_____Fathead minnow Pimephales promelas X X X
Bulthead minnow Pimephales vigilux X X
Creek chub Semotilus atromaculatus X X
Suckers (Catostomidae) S
River carpsucker Carpiodes carpto
___Quillback Carpiodes cyprinus
White sucker ¢ comemersonii X X
Blue sucker® Cycleptus clongatus
Smallmouth buffalo _ . _Ictiobus bubatus
Bigmouth buffalo Ictiobus cyprinellus - -
Shorthead redhorse . muacrolepid x 7 X N
Catfishes (Ictaluridae) i T : -
____ Black bullhead Ameiurus melas X X
____Yellow bullhead _ Ameiurus natalis X X
Channel catfish __Ictalurus punctatus X X
Slender madtom Noturus exilis X X
Stonecat Noturus flavus X B X -
___ Flathead catfish Pylodictis olivaris n X
_Killifishes (Fundulid
Blackstripe top Fundulus notatus B X
Tivebearers (Poeciliidae)
___Mosquitofish Gambusia affinis ° X
Temperate Basses (Percichthyidae)
___White bass Morone chrysops X
Sunfishes (Centrarchidae)
Green sunfish Lepornis cyanellus X X X
Orangespotted sunfish Lepomis humilis T X X X
. Bluegill Lepomis macrochirus X X X
____Longear sunfish Lepomis megalotis X X
___Spotted bass Micropterus punctulatus X X
.. Largemouth bass Micropterus salmoides X X X
White crapple Tomoxis annularis X X
“Perches (Percidae)
johnny darter Etheostoma nigrum X X X X
___Orangethroat darter Etheostoma spectabile X X X
Logperch Ivrcina caprodes X X X -
Walleye St fion vitreum ‘X X
Freshwater drum Aplodinotus grunniens X -
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Importance of Maintaining

-

Quality Habitat

Physical habitat is the most important aspect for tish and
other aquatic organisms in streams. Structures such as

stumps, logs, boulders, and streamside vegetation are all
examples of habitat.

Habitat is a broad term
that has different
meanings to differ-
ent species. For
example, an indi-
vidual fish may
feed on insects in
rocky riffles, hide
from predators in aquatic
vegetation, and spawn under
a log. On the other hand,

a different fish may spend
its entire life near rocks.

[n general, streams
on Fort Riley have
excellent habitat
for fishes. Little
Arkansas, Forsyth,
and Sevenmile
Creeks are examples
of streams with diverse :
habitat. Loss of habitat can e
result from land-use practices and

may influence individual species

and disturb community
interactions.

" Hesdweler  Midweach

L.and-use practices
can influence habi-
tat in many ways.
The most common
is increased erosion
in the watershed
and subsequent
sedimentation.

ol




Which Fishes Can
Be Found on Fort Riley? . .

More than 50 different fish species can be found in the
streams and rivers on Fort Riley. Several game species are
abundant, including bluegills, largemouth bass, spotted
bass, and channel catfish.

Dozens of interesting
and unique nongame
species are also com-
mon on Fort Riley.
Many of the
nongame specices,
such as the south-
ern redbelly dace
and longear sunfish,
are brilliantly colored
and have unique adaptations

to life in flowing water. The Topeka
shiner (an endangered species) is present in several
streams along the western boundary of Fort Riley.

‘\-
| ,alrgc‘“m

Despite a decline in abundance across its distribution,
several streams in the Flint Hills appear to have healthy
Topeka shiner populations. Similarly, the plains minnow
(an uncommon species) has been collected in the Kansas
River on Fort Riley. In addition to the various fishes, many
other organisms—such as freshwater mussels, crayfish, rep-
- tiles, amphibians, and insects—call streams home.
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Directorate of Environment and Safety

. .
The Fort Riley DES, Conservation Division, is responsible
for the management of the installation’s vast natural and
cultural resources. Besides the management of endangered
and threatened species, division personnel administer pro-
grams in fish and wildlife management, range management,
forest management, historic structures management, arche-
ological resources protection, improved grounds manage-
ment, pest management, and soil conservation.

The DES, Conservation Division, also works with G3 in
carrying out the integrated Training Area Management,

or ITAM, program. ITAM is a multifaceted program of land
inventory and monitoring, environmental education, and
training land maintenance.

Please do your part to protect stream resources. If you
do not intend to keep this brochure for future reference,
please pass it on to another interested person.

We welcome comments on this publication. To comment,
please call the Conservation Division, Directorate of
Environment and Safety, at 785-239-6211, or send your
comments to:

e
L ;
._.‘:\\ i i

Conservation Division, DES
AFZN-ES-C
Fort Riley, KS 66442-6016
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ABSTRACT

Instream habitat is important in determining fish community characteristics;
however, few studies have been conducted to assess the influence of physicochemical
habitat on fish community structure and function in tallgrass-prairie streams. In addition,
the effects of large-scale disturbance on soil characteristics and plant communities are
well documented, but little is known about the influence of military activities on soil and
vegetation and the effects on instream habitat and fish community characteristics in
small, lotic ecosystems. The purpose of this study was to provide baseline information
on the relationships among physicochemical habitat and fish community structure and
function on Fort Riley Military Reservation and to assess the influence of large-scale
disturbance from military activities on instream habitat and fish assemblages. Sampling
sites were selected from headwater, middle (mid), and lower reaches based on drainage
area. Physical habitat and fish communities were sampled within each macrohabitat
(i-e., pools and riffles). Analysis of variance was used to determine differences in habitat
and fish community characteristics among reaches and relationships among abiotic and
biotic variables were analyzed using correlation and regression techniques.

Water chemistry variables (e.g., dissolved oxygen, reactive phosphorous) were
similar among reaches; whereas, physical habitat (e.g., depth, width) increased
longitudinally. Percent disturbance within the watershed and percent silt were highest in
headwater reaches. In general, large substrate (e.g., cobble, pebble) was most abundant
in mid and lower reaches. Aquatic vegetation and woody debris were the most common
forms of cover in all reaches and macrohabitats.

Percent disturbance within a watershed was positively correlated with percent silt




in pool macrohabitats from headwater and mid reaches. Percent canopy cover was
negatively correlated with aquatic vegetation in all reaches and positively correlated with
area of woody habitat (e.g., bank root, rootwad) in headwater and mid reaches. In
addition, woody-riparian vegetation was negatively correlated with mean daily,
maximum daily, and maximum daily range in temperature in mid reaches. In riffle
macrohabitats, percent disturbance was negatively correlated with mean depth, width,
and velocity for headwater reaches.

Percent disturbance from military activity was associated with high catch per unit
effort (C/f) of tolerant species and trophic generalists. Despite high percent silt in
headwater reaches, percent disturbance and percent silt were rarely correlated with fish
community characteristics. Headwater sites that were dominated by silt substrate
generally had few species; whereas, a minimal increase in habitat heterogeneity (i.e.,
increased percent gravel) was associated with higher species richness. The increase in
species richness was due to the addition of trophic generalists and tolerant species.
Species richness and diversity were positively correlated with percent disturbance in
mid-reach watersheds and was reflective of increased abundance of omnivores and
tolerant species. In riffle macrohabitats, percent disturbance was negatively correlated
with C/f of benthic-insectivores in headwater reaches and positively correlated with C/f
of tolerant species in mid reaches.

Riparian area variables (e.g., canopy cover, bank root) in pool macrohabitats were
positively correlated with trophic guild diversity, C/f of benthic-insectivores,
generalized-insectivores, omnivores, and intolerant species among reaches. Similar

relationships were found in riffle macrohabitats where riparian area variables were



positively correlated with C/f of benthic-insectivores and omnivores and negatively
correlated with C/f of tolerant species. In addition, mean back-calculated lengths at age
for central stonerollers Campostoma anomalum, creek chubs Semotilus atromaculatus,
red shiners Cyprinella lutrensis, and green sunfish Lepomis cyanellus were positively
correlated with area of woody habitat. The proportion of age-0 central stonerollers and
creek chubs was positively correlated with habitat characteristics associated with poor-
quality habitat (e.g., low percent canopy cover, shallow depth, small substrate). Few
biotic interactions were found in headwater and lower reaches; however, growth of
central stonerollers, creek chubs, red shiners, and green sunfish was negatively correlated
with their abundance— suggesting that density-dependent factors influenced growth.

| These results indicate that habitat and fish communities in streams from the Flint
Hills exhibit similar longitudinal patterns as other ecosystems. They also suggest the
importance of large-scale disturbance and woody-riparian vegetation to instream habitat
and fish community structure and function. In addition, riparian areas provide an
important link between land-use and instream process. However, riparian areas
apparently failed to filter surface runoff and decrease sedimentation in streams on Fort
Riley. This is likely due to the presence of numerous stream crossings which disrupt

riparian continuity and provide access of silt to streams.
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Introduction

Fish community characteristics often reflect the qualit}" of physicochemical
habitat in stream ecosystems. Physical and chemical habitat influence fish commuﬂity
structure (e.g., species composition; Gorman and Karr 1978) and function (e.g., growth;
Putnam et al. 1995). Thus, understanding and recognizing the influence of habitat on
fish communities is important for fisheries scientists to properly manage aquatic
resources (Funk and Pflieger 1975; Larimore 1981; Winger 1981).

Numerous researchers have documented the influence of instreain habitat on
fishes using correlation and regression techniques. These techniques have been a useful
management tool for predicting fish abundance and distribution from instream habitat
(Fajen 1981; Orth ahd Maughan 1982; Helm 1984; McClendon and Rabeni 1987; Fausch
et al. 1988). For example, Binns and Eiserman (1979) found that trout Salvelinus spp.,
Salmo sp., and Oncorhynchus spp. standing stock in Wyoming streams was related to
physicochemical habitat such as instream cover, substrate type, current velocity, and
nitrate concentration. Scarnecchia and Bergersen (1987) found that production and
biomass of trout Salvelinus spp. and Salmo sp. were negatively correlated with elevation
and positively correlated with substrate diversity, conductivity, alkalinity, and water
hardness. McClendon and Rabeni (1987) documented that density and biomass of
smallmouth bass Micropterus dolomieu and rock bass Ambloplites rupestris were best
explained by the amount of boulder, cobble, undercut bank, and aquatic vegetation in a
Missouri stream. In Kansas and Oklahoma streams, Layher and Maughan (1985)

compared standing stock of channel catfish Ictalurus punctatus to nineteen habitat



variables and found that runoff, percent of stream area as runs, and water temperature
explained nearly 50% of the variability in channel catfish biomass. Tillma et al. (in
press) documented that the area of rootwad and undercut bank explained 62% of the
variation in spotted bass Micropterus punctulatus biomass in southeast Kansas streams.
Although some research has been conducted on habitat-species relationships in Kansas,
no studies have documented the effects of disturbance within watersheds on streams in
tallgrass-prairie ecosystems.

Physicochemical habitat can be altered in various ways by large-scale
disturbances. Several authors have documented increased erosion and sediment transport
to streams from agricultural practices including row-crop agriculture (Costa 1975; Clark
1987) and livestock grazing (Meehan and Platts 1978; Platts 1991). Similarly, timber
harvest practices (Furniss et al. 1991), mining (Nelson et al. 1991), and urban
development (Wolman and Schick 1967; Simmons 1976) can increase nutrient and
sediment inputs to lentic and lotic ecosystems. Sedimentation typically reduces
interstitial spaces among rocks and other forms of habitat used by stream fishes
(McCrimmon 1954; Cordone and Kelley 1961). Furthermore, sedimentation can
decrease aquatic macroinvertebrate production (Lemly 1982), which also influences
stream fishes.

Disturbance often reduces habitat heterogeneity in stream ecosystems. Gorman
and Karr (1978) determined that natural streams contained more heterogeneous habitat
than modified streams and supported more diverse fish communities. Pearsons et al.

(1992) suggested that fish assemblages were more diverse in stable, structurally complex



streams compared to streams with homogeneous habitat. In Illinois, Schlosser (1982a)
found that trophic structure, age structure, and biomass of fish were more stable in an
unmodified stream than a channelized stream. Angermeier and Karr (1984) removed
woody debris from one side of a small Illinois stream and found that substrate became
homogeneous, depth was reduced, and the amount of organic litter decreased on the
cleared side. Consequently, 60% of the fish species were more abundant on the side with
woody debris. These studies indicate the importance of habitat to fish communities and
the effects of habitat composition on fish community structure and function.

Disturbance from military activity has been shown to deleteriously affect soil
properties and plant communities (Wilson 1988); however, the influence of these
practices on stream ecosystems is unknown. The Flint Hills region of Kansas contains
the only extensive tract of tallgrass prairie in the U. S. (Bragg and Hulbert 1976;
Zimmerman 1985; Knapp and Seastedt 1986; Lauver 1994); however, little research has
been conducted on streams in this ecosystem. Therefore, the goal of this study was to
identify factors influencing physicochemical habitat and fish community characteristics
on Fort Riley Military Reservation in a tallgrass-prairie ecosystem. Most of the streams
on Fort Riley are completely contained within the boundaries of the installation which
provides a unique opportunity to examine physicochemical habitat, fish communities,
and disturbance on a large scale. The specific objectives were to 1) describe differences
in physical and chemical habitat, 2) describe fish community structure (i.e., age, trophic)
and growth of fishes, 3) assess the influence of large-scale military disturbance and

riparian vegetation on physicochemical habitat and subsequent effects on fish community
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characteristics, and 4) describe fish community interactions in the streams on Fort Riley
Military Reservation. I hypothesized that chemical habitat would be similar among sites,
but physical habitat (e.g., area of cover) and fish community characteristics (e.g., species
richness) would increase longitudinally. I also hypothesized that disturbance from
military activity would adversely affect instream habitat and negatively influence species
richness, species diversity, and abundance of fishes. In addition, I hypothesized that
high-quality riparian areas would moderate the influence of disturbance within the

watersheds on habitat and fish communities.

Study Area

The Flint Hills region, which extends from northeast Oklahoma north to northeast
Kansas (Figure 1), is characterized by extensive limestone breaks and shallow, rocky
soils comprised primarily of chert (Zimmerman 1985). Kiichler (1974) classifies the
potential natural vegetation as tallgrass prairie dominated by little bluestem Andropogon
scoparius, big bluestem A. gerardii, indiangrass Sorghastrum nutans, and switchgrass
Panicum virgatum. Extensiye riparian forests are comprised primarily of oak Quercus
spp. and hackberry Celtis occidentalis. Sharp relief and rocky soils have hindered
extensive cultivation; thus, the Flint Hills region contains the largest remnant of tallgﬁss
prairie in North America (Bragg and Hulbert 1976; Zimmerman 1985; Knapp and
Seastedt 1986; Lauver 1994). Streams in the Flint Hills have relatively high gradients
(Metcalf 1966). Degredation of large quantities of limestone and shale have been

transported to the streams and often form the dominant substrate. Streams in the Flint
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Hills support the most diverse fish fauna of the Kansas River basin.

Fort Riley Military Reservation is located in the Flint Hills region of northeast
Kansas, Riley, Geary, and Clay counties (Figure 1). Fort Riley encompasses
approximately 40,200 ha and is the site of military training such as field maneuvers,
mortar and artillery fire, and small-arms fire (U. S. Army 1994). In addition, combat-
vehicle operations (e.g., M1A1 tanks, M2/M3 and M113 personnel carriers) are common
throughout the year. The southern portion of the installation includes most of the
developed areas which provide housing and other facilities for Fort Riley’s personnel.
Training and maneuver areas are generally limited to the northern portion of the
installation. A 6,480 ha Impact Area (IA) is off limits to maneuver training, public use,
and management related activities at all times (Figure 1), while the Multipurpose Range
Complex (MPRC) and adjacent danger fan are closed to public use and management
activities during live-fire operations (Figure 1). The remaining areas are open throughout
the year except during times of large-scale training activities. The majority of the
landscape on Fort Riley is representative of Flint Hills topography; however, the western
portion of Fort Riley has less relief and several areas were once cultivated. Currently,
agricultural practices are limitéd to small wildlife food plots, limited haying of prairie
grasses, and row-crop leases along the fire-break bordering the installation (C. Phillips,
range conservationist, personal communication). Fifteen streams are located on Fort
Riley (Figure 1) including portions of the Kansas and Republican rivers which were
excluded frbm this study. Most of the streams are perennial due to groundwater input

and few streams contain impoundments within their watershed.




Methods

Streams were delineated into headwater, middle (mid), and lower reaches.
Classifications were based on field observations and subsequent analysis of drainage
areas according to the following criteria; headwater reaches (0 - 9.0 km?), mid reaches
(9.1 - 20.0 km?), lower reaches (220.1 km?). Two sites were randomly selected for each
reach to represent the abiotic and biotic characteristics of the reach (e.g., two sites within
the headwater reach of Wind Creek; Figure 1). Several reaches were not available for
sampling because they were located in restricted areas (i.e., MPRC or IA). Samples were
collected during June and July in 1997 and 1998. Sites and years were pooled by stream
and reach for a total of eight headwater, six mid, and five lower reaches (Table 1).

Sample sites were generally 35 times the mean stream width (MSW; Lyons 1992;
Simonson et al. 1994). Logistically, several sites were too wide to sample 35 MSW;
therefore, the maximum length of a reach was approximately 300 m—following the
stream sampling protocol established by Kansas Department of Wildlife and Parks
(Mammoliti 1993). Water chemistry samples were collected from three locations—one
from the upper, middle, and lower portion of the sample site. Temperature (°C) and
conductivity (1.S/cm) were measured with a Hach CO150 conductivity meter (Table 2).
Dissolved oxygen (mg/L as O,; Hach HRDO Method 8166), turbidity (Formazin turbidity
units [FTU]; Hach Absorptometric Method 8237), and reactive phosphorous (mg/L as
PO,*; Hach PhosVer 3 Method 8048) were measured using a Hach DR-EL/2000 portable
laboratory kit. Boyd (1977, 1980) found that field kits are adequate for measuring water

quality. In addition, one Hobo Temp® temperature logger was placed at each site during
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the last week of May and was removed in August, 1997 and 1998. Temperature loggers
measured temperature at 3.25 h intervals. Maximum daily temperature, mean daily
temperature, and maximum daily range in temperature between June 1 and August 17,
1997 and 1998, were determined for each reach (Table 2).

Stream gradient (m/km) was determined from U.S. Geological Survey quadrangle
maps (1:24,000 scale) following methods recommended by Hamilton and Bergersen
(1984). Disturbance within a watershed was assessed using a track-disturbance index
collected by the U.S. Army from Land Condition Trend Analysis (LCTA) transects. Fort
Riley LCTA transects have been measured annually since 1989 for plant species
composition, site and soil characteristics, land management activities, and level of
disturbance to the soil and vegetation (Fay 1997). Tazik et al. (1992) provides a detailed
description of methodology for LCTA monitoring. Mean percent disturbance scores
represented the severity of soil and vegetation disturbance from military training (e.g.,
tank traffic) and was calculated as the average percent of sample points where physical
disturbance occurred during all years of LCTA surveying. Disturbance index values were
calculated for each reach by averaging the values within a drainage basin above sites.

Total length of individual macrohabitats was measured. Stream width, depth,
current velocity, and substrate particle size were measured at four equidistant points and
the midpoint (Platts et al. 1983) along transects spaced at 0.25 and 0.75 times the length
for macrohabitats < 30 m. If a macrohabitat was > 30 m, transects were placed at 0.25,
0.50, and 0.75 times the length. Mean column velocity was measured at 0.60 times the

depth when depths were < 0.75 m with a Marsh-McBirney Flowmate 2000 flowmeter.
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When depths were > 0.75 m, velocity was measured at 0.20 and 0.80 times the depth and
averaged (Buchanan and Somers 1969). Substrate particle size was classified according
to a modified Wentworth scale (Cummins 1962), except for the inclusion a bedrock
category and pooling of sand categories. In areas where visual estimation was prohibited
by depth or turbidity, substrate particle size was estimated by touch with a rod (Platts et
al. 1983). Percent canopy closure was measured with a spherical densiometer at four
points along each transect (Murphy et al. 1981). One measurement was taken at each
stream margin, facing perpendicular to the bank, and two readings were taken at the
midpoint, one facing upstream and one facing downstream. Instream cover was defined
as any object > 0.3 m long and in water > 0.3 m deep. Two measurements of length,
width, and water depth were collected for all cover. Specific descriptions of cover
classifications are provided in Table 2.

Fish sampling and physical habitat measurements were measured separately
within each macrohabitat (i.e., pools and riffles). Well-defined run macrohabitats were
not encountered and were easily classified as a pool or riffle. One upstream-
electrofishing pass was conducted per macrohabitat with a Smith-Root Model 15-C
backpack electrofisher equipped with a 120-V generator using pulsed-DC current.
Because electrofishing is biased towards large and different species of fish (Bayley and
Dowling 1990; Reynolds 1996), seining (bag seine, 7.62-m x 2-m with a 1-m x 1-m bag
and 6-mm bar measure mesh) was conducted to supplement electrofishing efforts (Hoyt
et al. 1979; Bayley and Dowling 1990). Two seine and two kick-seine hauls were

conducted in pool and riffle macrohabitats, respectively. Fifty fish of each species were
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measured to the nearest millimeter (total length)-additional fish were counted. Fish that
could not be identified in the field were preserved in 10% formalin and identified in the
laboratory. Catch per unit effort (C/f) was used to index species and trophic guild
abundance (Ney 1993) and was expressed as the number of fish per minute of
electrofishing (fish/min) and the number of fish per meter seined (fish/m).

The Shannon-Wiener index was used to assess species (Hg') and trophic guild
diversity (H;'; Ney 1993):

SorT
Hg' or Hy' =-Yn,/NIn (n;/ N),

1=1

where, N = number of individuals in the sample; S or T = number of groups [i.e., species
(S), trophic guild (T)] in sample; and n; = number of individuals in group i in the sample.
Each fish species was also placed into a trophic guild based on published information
(Table 3; Schlosser 1982b; Gorman 1988; Cross and Collins 1995; Pflieger 1997). The
six trophic guilds were benthic-insectivore (BI), generalized-insectivore (GI), herbivore-
detritivore (HD), insectivore-piscivore (IP), omnivore (OM), and surface- and water-
column insectivore (SW). Schlosser (1982b) provides specific descriptions of trophic
guilds. In addition, several species were placed into tolerance categories (i.e., intolerant,
tolerant) based on their habitat and reproductive requirements (Table 3; Cross and
Collins 1995; Pflieger 1997).

Scales from 10 fish per centimeter length group were collected from central

stonerollers, red shiners, creek chubs, and green sunfish (DeVries and Frie 1996). Fish

used in the determination of age and growth were not collected independent of
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Table 3. Common name, scientific name, trophic guild, tolerance category (T = tolerant; I = intolerant), and
longitudinal locations sampled (H = headwater reach, M = mid reach, L = lower reach) for all fish species
sampled from streams on Fort Riley Military Reservation during June and July 1997, 1998. Trophic guilds
are delineated as: benthic-insectivore (BI), generalized insectivore (GI), herbivore-detritivore (HD),
insectivore-piscivore (IP), omnivore (OM), and surface- and water-column insectivore (SW).

Trophic

Common name Scientific name guild Tolerance* H M L
Central stoneroller Campostoma anomalum HD 1 X X X
Suckermouth minnow Phenocobius mirabilis BI 1 X X
River carpsucker Carpiodes carpio BI X
White sucker Catostomus commersonii BI X X X
Shorthead redhorse Moxostoma macrolepidotum BI X
Slender madtom Noturus exilis BI I X X
Stonecat Noturus flavus BI X X
Johnny darter Etheostoma nigrum BI X X
Orangethroat darter Etheostoma spectabile BI I X X X
Red shiner Cyprinella lutrensis GI T X X X
Common shiner Luxilus cornutus GI X X X
Redfin shiner Lythrurus umbratilis Gl I X X X
Topeka shiner Notropis topeka GI I X X
Southern redbelly dace Phoxinus erythrogaster Gl I X X
Bullhead minnow Pimephales vigilax Gl X X
Creek chub Semotilus atromaculatus GI X X X
Logperch Percina caprodes GI X X
Blackstripe topminnow Fundulus notatus SW X
Mosquitofish Gambusia affinis Sw T X

Common carp Cyprinus carpio OM T X X
Sand shiner Notropis ludibundus OM X X
Bluntnose minnow Pimephales notatus OM T X X X
Fathead minnow Pimephales promelas OM T X X X
Black bullhead Ameiurus melas OM T X X X
Yellow bullhead Ameiurus natalis OM T X X X
Channel catfish Ictalurus punctatus P T X
Green sunfish Lepomis cyanellus P T X X X
Orangespotted sunfish Lepomis humilis P T X
Bluegill sunfish Lepomis macrochirus IP T X X X
Longear sunfish Lepomis megalotis 14 I X X
Spotted bass Micropterus punctulatus 1 I X X
Largemouth bass Micropterus salmoides P T X X X
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Table 3. Continued.

White crappie Pomoxis annularis P
Hybrid 1 L. cyanellus x L. humilis P
Hybrid 2 L. cyanellus x L. macrochirus IP
Hybrid 3 L. megalotis x L. macrochirus IP
Walleye Stizostedion vitreum 1P

Moo MK X

* Tolerance criteria only established for species that were clearly characterized as intolerant or tolerant.
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macrohabitat type (i.e., scales were collected from the first 50 fish, regardless of
macrohabitat). Scales were either pressed on acetate slides or mounted between glass
slides and examined with a microfiche reader. The Fraser-Lee method was used to
determine mean back-calculated length at age for green sunfish using a standardized
intercept value of 10 mm (Carlander 1982). A standard intercept value has not been
proposed for central stonerollers, creek chubs, or red shiners and the body-scale
relationships were weak (i.e., r* < 0.77); therefore, the direct proportion method was used
to calculate mean back-calculated length at age. Age structure of each species was
estimated using age-length keys and assessed by determining the proportion of age
classes within a sample (DeVries and Frie 1996).

Samples from pools and riffles were assumed to be independent; thus, pool and
riffle macrohabitats were analyzed separately. In addition, it is well documented that
habitat area and volume (e.g., depth, width) increase longitudinally (Schlosser 1982b;
Angermeier and Schlosser 1989; Gordon et al. 1992); therefore, analyses were conducted
within each drainage classification (i.e., headwater, mid, and lower reaches) to decrease
the influence of spatial variation. Principal component analysis was used to determine if
reaches were properly classified. Only principal components with eigenvalues greater
than one were used in subsequent analyses (Dillon and Goldstein 1984); Variables for
each principal component were retained only if the eigenvector was > |0.40|.

The mean of each variable from individual macrohabitats was calculated for a
site. The mean for sites was used to estimate parameters within a reach (e.g., two

headwater sites on Wind Creek) and was used in all analyses. All variables were
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examined for normality using univariate plots and the Shapiro-Wilk statistic and for
homogeneity of variance using Levene’s test (Ott 1993). No variables showed
substantial deviations from normality, except phosphorous concentration. Phosphorous
concentration values from Forsyth Creek were removed from all analyses due to the
influence of an upstream sewage-treatment facility. Scatter and studentized-residual
plots for all relationships were examined to identify outliers, linear relationships, and
possible curvilinear relationships. Analysis of variance (ANOVA) was used to determine
differences in physicochemical habitat and fish community characteristics among
reaches by macrohabitat. Multiple comparisons were conducting using least-squared
means (Ott 1993).

Correlation analysis was used to examine relations among physicochemical
variables. Linear regression analysis was used to model relations between
physicochemical habitat and fish community characteristics. Relationships with
Pearson’s product-moment correlation coefficients (#) > |0.60| and P-values < 0.10 were
retained for further analysis. Stepwise-multiple regression was used to determine which
of the remaining variables explained most of the variation in fish community
characteristics. The contribution of individual variables was tested using F-tests, and
regression equations were limited to variables which contributed significantly (P < 0.10)
to the model. Models containing more than one independent variable were compared to
reduced models by examining Mallows’ C, statistic and reductions in the coefficient of
determination (?, R%, Mallows 1973; Ott 1993). The coeficient of variation is presented

as adjusted #* or R2. Multicollinearity was analyzed by examining tolerance values and
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variance inflation factors as recommended by Sokal and Rohlf (1981). Most predictive
models were limited to a single variable because additional variables did not add
significantly to the model (P > 0.10). All statistical analyses were conducted using SAS

(SAS 1996).

Results
Physicochemical Habitat Relations

Principal component 1 accounted for 61% and 69% of the variation in pool and
riffle macrohabitats, respectively. Depth (eigenvector = 0.56), width (0.60), and gradient
(-0.50) were the main loading variables for pool macrohabitats, while depth (0.55), width
(0.54), and velocity (0.55) were the loading variables for riffle macrohabitats (Figure 2).
Comparisons of mean principal component scores among reaches (ANOVA; Ott 1993)
indicated that mean scores for all reaches were significantly different for pool and riffle
macrohabitats (F = 20.33, df = 2,16, P =0.0001; F = 7.58, df = 2, 14, P = 0.005;
respectively). Therefore, the a priori classification of reaches by drainage area and
observation correctly classified all reaches as headwaters, mid, or lower reaches as
evident by hydrological and stream morphology characteristics.

Mean dissolved oxygen concentration was never below 6.9 mg/L from all
reaches, despite temperatures in excess of 20°C (Table 1). Mean dissolved oxygen
concentration did not differ significantly among reaches (F =1.03, df =2, 16, P = 0.3).
Mean reactive phosphorous concentration was generally below 0.50 mg/L and did not

differ among reaches (F = 0.10, df = 2, 14, P = 0.9); however, phosphorous
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Figure2. Mean principal component scores for pool and riffle macrohabitats by reach (headwater, mid,
lower) for streams sampled on Fort Riley Military Reservation during June and July 1997, 1998.

Bars represent one standard error. Reaches with the same letter (within macrohabitat) designates
no significant difference (P > 0.10).
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concentrations > 5.0 mg/L were recorded from Forsyth Creek. Mean conductivity was
significantly higher in mid reaches than in headwater and lower reaches (F=3.28,df=2,
16, P =0.06) and turbidity was significantly higher in lower reaches (F=3.68,df=2, 16,
P =0.04) followed by headwater and mid reaches. Mean daily, maximum daily, and
maximum daily range in temperature were similar among reaches (Table 1) and did not
differ significantly (F < 0.31, df=2, 13, P > 0.7). Daily fluctuations of temperature >
10.0 °C were recorded at several sites. Mean percent disturbance in headwater
watersheds was significantly higher than in mid and lower-reach watersheds (F=4.12,df
=2, 16, P=0.03). Most disturbance from military training occurred in the uplands
within the interior portion of the installation, which accounts for the high percent
disturbance in headwater watersheds.

One-hundred and ninety-one pool and 171 riffle macrohabitats were sampled
during June and July, 1997 and 1988, to represent the eight headwater, six mid, and five
lower reaches. Mean width, depth, and velocity in pool (F > 3.51, df=2, 16, P < 0.05)
and riffle (F > 2.97, df =2, 14, P < 0.04) macrohabitats differed significantly among
reaches (Figure 3). Riparian vegetation was abundant at most sample sites and often
extended for several hundred meters from the stream margins. Consequently, mean
canopy did not differ significantly among reaches in both pool (F = 0.07, df =2, 16, P =
0.9) and riffle (F = 1.21, df =2, 14, P = 0.3) macrohabitats (Figure 3).

The proportion of silt substrate in pool macrohabitats was significantly higher in
headwater reaches compared to mid and lower reaches (Table 4, F=3.72,df=2,16, P =

0.04). Percent bedrock substrate was significantly highest in lower reaches F=3.22,df
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Figure 3.

1 1

Pool Macrohabitat
Mean width, depth, current velocity, and percent canopy cover for pool and riffle macrohabitats
by reach (headwater, mid, lower) for streams sampled on Fort Riley Military Reservation during
June and July 1997, 1998. Bars represent one standard error. Reaches with the same letter

‘(within macrohabitat; poo! or riffle) designates no significant difference (P > 0.10).
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=2,16, P =0.06). Silt and cobble substrate were most abundant in riffle macrohabitats
from headwater reaches; whereas, the dominant substrate in mid and lower reaches was
cobble and pebble. Only percent pebble substrate differed among reaches (F =4.52, df =
2,14, P=0.03).

Aquatic macrophytes, primarily Lemnaceae and Potamogeton spp., were the most
abundant form of instream cover in pool macrohabitats for headwater and mid reaches
and did not differ significantly (Table 5; F=1.01, df =2, 16, P =0.3). Area of total
woody debris was the dominant cover type in lower reaches, but did not differ
significantly from other reaches (F = 0.81, df =2, 16, P = 0.4). For riffle macrohabitats,
total woody debris was the most common form of instream cover in headwater and lower
reaches. Aquatic vegetation, rootwad, and undercut-bank habitat were. only sampled in
riffle macrohabitats from mid reaches. Despite the differences in area of instream cover,
no significant differences were found (F < 1.53, df =2, 14, P > 0.3).

I surmised that instream habitat was affected by landscape-level conditions; thus,
percent disturbance and riparian canopy cover were analyzed with instream habitat
variables. In pool macrohabitats, percent disturbance was positively correlated with
percent silt in headwater and mid reaches (Figure 4). Percent canopy cover was
negatively correlated with area of aquatic vegetation and explained 61% - 90% of the
variation in all reaches (Figure 5). Area of aquatic vegetation never exceeded 2 m*ha
when canopy cover was >75%. Percent canopy cover was also positively correlated with
area of bank roots (headwater and mid) and rootwads (mid) using a second-order

polynomial (Figure 5). Area of woody debris (i.e., bank root, rootwad) did not exceed 20

24




(c181) ) () (TeLn @@L 0) ) 0)

18T <0 +0 FTUT nR4 0 «0 0 b Iomo
(6'¢h) @€ (66 Ly (6'29) (s91) (1« (1'681)
«5°90T '€ 66 ST «€°SE 591 €€ FPST | PIN
@®LvD) 0 (V)] wyin (621 €n 812 ()]
«S0VT <0 0 «€S61 LT x€'1 «£'9C 0 b Iojempesy
€v9 (19 90 (6'09) €¥9) @s) #'60) {¥374)
6'LSY «S'8 81 «C'6S€ VYA 01 x5'SS £ €TE d oMo
#79) (Teg) ov1) @@Ly @ws (69¢) #09) (6'9811)
«8°TEE €SS 66T JEET LT «1'69 0°€8 «£'SEET d PIN
(s911) ('ow (s'€D (€901) (8L) 611) (€8 &6
8'L6Y «I'€9 «S°0L «CPSE MVA 6'S€E 10T 96911 d IoyempesH
SHQap yueq noIapun pemiooy xo[dwiod 801 j001 xo[duiod zouﬁowg 1B)JIGRYOIOBIA Yoeay
Apoom Te10L 307 yusg youerg onenby
£1039380 10A0))
*K1039180 39400 puR (S[JL=Y ‘[ood=q)

jelqeqoIorw Aq sagoeal Suowre axom suosuedwio) (Q1°0 < J) SOUSISYIP JUeOTUSIS OU SJedIPUl Io)] SuTes oY) YIM SaneA “JOLS pIepue)s spuosaidor
sisouared ur soquinN ‘8661 ‘L661 AInf pue sung Suump pajdures UonBAISSSY ATRNIA A5[Ty 10, U0 sureans uf (By/,w) J9A0 JO Junowy ¢ 9[qeL

25




"8661 ‘L661 AInf pue sung

SuLmp uoneAlsssy ATRIUA Lo[ry 104 uo pojdures sureans 1oy sieyiqeyoloew [00d UT (%) S0UBQINSIP PUE (%) I]IS UsamIaq sdiysuonejoy ' 9m3ig
(%) Xoput oueqInIsi(q
0L 09 0¢ o¥ 0¢ 174 o1 0
1 | i 1 1 A o
Q
- 0C
o© ¢

o) - OF
=z
o 5
5
<

° ® - 09

®
° L 2
®
. - 08
(S00°0=d ‘s8'0=7) PN ©
° (€0°0=d ‘05'0=7) OIEMPEH ¢
001

26



Aquatic vegetation (m”/ha)

Bank root (m*/ha)

Rootwad (m’/ha)

8000

°
®  Headwater (*=0.73, P=0.004)
O Mid (*=0.90, P=0.002)
6000 - © 0 ¥ Lower (=061, P=0.07)
4000
2000 - o}
&
®
0 T T T T ’l"——‘g‘ﬂm
30 40 50 60 70 80 90 100
250
o}
®  Headwater (+*=0.33, P=0.08)
2004 O -Mid (R*=0.65, P=0.0001)
150 -
J o}
100 ®
°
50 - o %4
™
o}
0 o | — —O0— e
30 40 50 60 70 80 90 100
100
80 ® Mid (+*=0.80, P=0.009) o
°
60
40
°
20
0 : ] L P N— :
30 40 50 60 70 80 90 100

Mean canopy cover (%)

Figure 5. Relationships between aquatic vegetation (m*/ha), bank roots (m% ha), and rootwads
(m%/ha) and canopy cover (%) in pool macrohabitats for streams sampled on Fort Riley
Military Reservation during June and July 1997, 1998.
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m?/ha until canopy cover was 75%. Percent canopy cover in mid reaches was also
correlated with area of bank roots (» = 0.80, P = 0.05), area of total woody debris (r =
0.89, P =0.01), mean daily temperature (» =-0.71, P = 0.09), maximum daily
temperature (r = -0.79, P = 0.05), and maximum daily range in temperature (» = -0.88, P
=0.02). In riffle macrohabitats, percent disturbance was negatively correlated with mean
depth (r = -0.85, P =0.03), width (r =-0.73, P = 0.09), and velocity (» =-0.89, P = 0.01)
in headwater reaches. Aquatic vegetation was only sampled in mid reaches and was
positively correlated with percent disturbance (» = 0.89, P =0.01). Percent disturbance
and canopy cover were not significantly correlated with physicochemical variables in

lower stream reaches (P > 0.10).

Fish-Habitat Relations

Fish community indicies.— Approximately 19,850 individual fishes representing
35 taxa and 7 families were sampled from all reaches and macrohabitats. Cyprinidae
was the most abundant family comprising 78% of the total number of fishes. Forty-five
percent of the fishes sampled were red shiners, central stonerollers, and bluntnose
minnows. The second most abundant family was Centrarchidae, which comprised 11%
of the sampled fishes, and was dominated by green sunfish, largemouth bass, and
bluegills.

Species richness, species diversity, and trophic guild diversity varied spatially and
by macrohabitat (Figure 6). Mean number of species in pool macrohabitats varied from

1 to 7 in headwater, 3 to 8 in mid, and 7 to 14 in lower reaches. Species diversity varied
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Figure 6.  Species richness (8), species diversity (Hy"), and trophic guild diversity (H,") for pool and riffle
macrohabitats by reach (headwater, mid, lower) for streams sampled on Fort Riley Military
Reservation during June and July 1997, 1998. Bars represent one standard error. Reaches
'with the same letter designates no significant difference (P > 0.10)
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from 0 to 1.3 in headwater, 0.7 to 1.5 in mid, and 1.4 to 1.9 in lower reaches. Trophic
guild diversity varied from 0 to 1.2 in headwater, 0.3 to 0.8 in mid, and 0.7 and 1.1 in
lower reaches. Species richness (F =21.13, df =2, 16, P =0.0001) and species diversity
(F=8.62,df=2, 16, P = 0.02) in pool macrohabitats were significantly higher in lower
reaches compared to mid and headwater reaches (Figure 6). Riffle macrohabitats
contained fewer species and were less diverse than pool macrohabitats. The mean
number of species never exceeded 3 in headwater and mid reaches, but varied from 2 to
8 in lower reaches. Species diversity varied from 0 to 0.6 in headwater, 0.2 to 0.9 in mid,
and 0.6 to 1.5 in lower reaches and trophic guild diversity never exceeded 1.1 for all
reaches. Species richness (F =9.90, df = 2, 14, P = 0.002), species diversity (F = 6.41, df
=2, 14, P=0.01), and trophic guild diversity (F = 5.04 =2, 14, P = 0.02) in riffle
macrohabitats were significantly higher in lower reaches than in headwater and mid
reaches (Figure 6).

Several physicochemical variables were correlated with species richness, species
diversity, and trophic guild diversity (Table 6). In pool macrohabitats, species richness
was weakly correlated with percent gravel in headwater reaches (» = 0.74, P = 0.03) and
percent disturbance in mid-reach watersheds (» = 0.72, P = 0.09). In general,
physicochemical variables were better correlated with species diversity and trophic guild
diversity (Table 6). For example, 91% of the variation in species diversity at headwater
reaches was explained by area of aquatic vegetation and branch complex. Similarly,
75% of the variation in trophic guild diversity at headwater reaches was explained by

area of aquatic vegetation and branch complex. Fifty-seven percent of the significant
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correlations among species richness, species diversity, and trophic guild diversity and
physicochemical variables were associated with riparian area variables (i.e., canopy
cover, branch complex). Substrate type was only significantly correlated with species
richness in headwater reaches. Species richness and species diversity in mid reaches
were only correlated with percent disturbance in the watershed (Table 6). Fish
community indices were correlated with different physicochemical variables in riffle
macrohabitats. For example, mean width explained 54% - 80% of the variation in
species richness, species diversity, and trophic guild diversity (Table 6). In contrast to
pool macrohabitats, riparian area variables were not significantly correlated (P > 0.10)
with fish community indices (Table 6).

Catch per unit effort by trophic guild and tolerance category.—Catch per unit
effort (C/f) of trophic guilds in pool macrohabitats was highest for lower reaches, except
for herbivore-detritivores (Figure 7). Only C/f of generalized-insectivores was
significantly different among reaches (F = 4.08, df =2, 16, P = 0.03). Herbivore-
detritivores (i.e., central stonerollers), generalized-insectivores, and omnivores were most
abundant in all reaches. Benthic-insectivores were also sampled, but their abundance
was expressed as fish/m of seining. Therefore, C/f of benthic-insectivores is not directly
comparable with other trophic guilds. Catch per unit effort of tolerant and intolerant
species was significantly higher for lower reaches than headwater and mid reaches
(Figure 8; F = 3.56, df =2, 16, P =0.05; F =9.93, df = 2, 16, P = 0.001; respectively).
Tolerant species were generally more abundant than intolerant species, except in lower

reaches-likely due to high C/f of redfin shiners, longear sunfish, and suckermouth
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Figure 7.  Catch per unit effort by trophic guild (BI=benthic-insectivore, GI=generalized-

insectivore, HD=herbivore-detritivore, IP=insectivore-piscivore, OM=omnivore) for
pool and riffle macrohabitats by reach (headwater, mid, lower) for streams sampled on
Fort Riley Military Reservation during June and July 1997, 1998. Bars represent one
standard error. Reaches with the same letter (within macrohabitat) designates no
significant difference (P > 0.10). Catch per unit effort is expressed as fish/min for all
trophic guilds, except for benthic-insectivores which is expressed as fish/m.
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Figure 8.  Catch per unit effort by tolerance category (tolerant, intolerant) for pool and riffle
macrohabitats by reach (headwater, mid, lower) for streams sampled on Fort Riley
‘Military Reservation during June and July 1997, 1998. Bars represent one standard
error. Reaches with the same letter (within macrohabitat) designates no significant
difference (P > 0.10).
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minnows in lower reaches.

Similar to pool macrohabitats, C/f of trophic guilds in riffles was highest in lower
reaches. Herbivore-detritivores and generalized-insectivores were the most abundant
trophic guild sampled by electrofishing from lower and mid reaches,; whereas, herbivore-
detritivores and omnivores were most abundant in the headwaters. Benthic-insectivores
were the most frequently sampled trophic guild in all reaches; however, their abundance
is not directly comparable to other trophic guilds due to differences in gear (i.e.,
electrofishing versus seining). Insectivore-piscivores were rarely collected in riffle
macrohabitats; thus, they were removed from further analyses. Catch per unit effort of
tolerant and intolerant species was significantly higher for lower reaches than headwater
and mid reaches (Figure 8; F=5.32, df =2, 14, P=0.01; F=3.68, df =2, 14, P = 0.05;
respectively). Tolerant species were more abundant than intolerant species in all
reaches.

Several physicochemical variables were correlated with C/f of trophic guilds and
tolerance categories (Table 7). In pool macrohabitats, substrate type was an important
physicochemical variable. For example, percent gravel was a significant correlate in
80% of the relationships for headwater reaches and explained 44% - 73% of the variation
in C/f of generalized-insectivores, insectivore-piscivores, omnivores, and tolerant species
(Table 7). Fifty percent of the significant correlations in mid reaches were associated
with percent disturbance or percent silt (Table 7). Percent disturbance explained 58% -
93% of the variation in C/f of insectivore-piscivores, omnivores, and tolerant species,

and percent silt was weakly correlated with C/f of insectivore-piscivores (# = 0.66, P =
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0.03). Similar to fish community index-physicochemical habitat relations, riparian area
variables (i.e., bank root, total woody debris) were significant correlates in pool
macrohabitats. For example, 69% of the variation in C/f of benthic-insectivores and 80%
of the variation in C/f of generalized-insectivores at mid reaches was explained by area
of bank root and t(ztal woody debris, respectively. Catch per unit effort of fishes in
trophic guilds and tolerance categories at lower reaches were best correlated with
hydrological (i.e., mean velocity) or stream morphological (i.e., mean width, mean
depth) variables. Mean width was the most common physicochemical variable and
explained 69% - 88% of the variation in C/f of insectivore-piscivores, omnivores, and
tolerant species in lower reaches (Table 7). The surface- and water-column insectivore
trophic guild was comprised of two species which were only collected from a few
locations; thus, they were removed from the analyses. The herbivore-detritivore trophic
guild was comprised only of central stonerollers; therefore, physicochemical habitat
relations are presented with individual species analysis.

In general, C/f of fishes in trophic guilds and tolerance categories were correlated
with different physicochemical variables in riffle macrohabitats. For example, riparian
area variables (i.e., canopy cover, branch complex, log) were significantly correlated
with C/f of fishes in all trophic guilds and tolerance categories at headwater reaches
(Table 7), whereas, percent gravel appeared to be most influential in pool macrohabitats.
Percent disturbance explained 88% of the variation in C/f of benthic-insectivores at
headwater reaches, and 64% - 76% of the variation in C/f of omnivores and tolerant

species at mid reaches. Similar to pool macrohabitats, significant physicochemical
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variables in lower reaches differed from headwater and mid reaches. No significant
correlations were found for C/f of intolerant species (P > 0.10). Correlation analysis was
not conducted for C/f of insectivore-piscivores due to low frequency of occurrence in
riffle macrohabitats.

Catch per unit effort by species.—Central stonerollers and creek chubs were
sampled from 95% of the reaches, while fathead minnows and green sunfish were
sampled from 84% of the reaches. All species sampled in headwater reaches were also
sampled in lower reaches (Table 3); however, several species (e.g., suckermouth
minnow, logperch) were only sampled in mid and lower reaches, or lower reaches (e.g.,
river carpsucker, walleye). Catch per unit effort of individual species in pool
macrohabitats generally increased from headwater to lower reaches (Figure 9), but only
C/f of red shiners (F = 6.86, df = 2, 16, P = 0.007), suckermouth minnows (F =2.82, df =
2, 16, P = 0.08), bluntnose minnows (F = 3.05, df = 2, 16, P = 0.07), and bluegills (F =
7.98, df =2, 16, P = 0.003) were significantly different. Analysis of variance and
correlation analyses were only conducted on species presented in Figure 9 because other
species were sampled from a few locations (i.e., < 3) or C/f was low (i.e., < 0.004
fish/min or < 0.03 fish/m). Central stonerollers, creek chubs, slender madtoms, and
orangethroat darters were the most abundant species in riffle macrohabitats. However,
only C/f of central stonerollers and slender madtoms differed significantly among
reaches (Figure 10; F=2.77, df =2, 14, P =0.09; F = 3.05, df = 2,14, P = 0.07,
respectively).

Numerous physicochemical variables were correlated with C/f of species in pool
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Figure 9. Catch per unit effort by species (CSTR=central stoneroller, CRCB=creek chub, REDS=red

shiner, FHMW=fathead minnow, SMMW=suckermouth minnow, BLNT=bluntnose
minnow, RENS=redfin shiner, GRSF=green sunfish, LMB=largemouth bass, BLG=bluegill,
BLBH=black bullhead, YLBH=yellow bullhead, WHSK=white sucker) from pool
macrohabitats by reach (headwater, mid, lower) for streams sampled on Fort Riley Military
Reservation during June and July 1997, 1998. Bars represent one standard error. Reaches
with the same letter designates no significant difference (P>0.10). Catch per unit effort is

- expressed as fish/min except for redfin shiners which is expressed as fish/m. Graphs are
separated by family (A=Cyprinidae, B=Centrarchidae, Ictaluridae, Catostomidae).
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macrohabitats (Table 8). Substrate variables were significantly correlated in 64% of all
relationships. Although percent gravel was significantly correlated with species richness
and C/f of generalized-insectivores, insectivore-piscivores, omnivores and tolerant
species in headwater reaches, percent gravel was only correlated with C/f of green
sunfish (Table 8). Conversely, substrate type was significantly correlated in 75% of the
relationships in mid reaches and all of the relationships in lower reaches. Percent silt
was the most common substrate type and explained 54% - 57% of the variation in C/f of
green sunfish, largemouth bass, and bluntnose minnows at mid reaches—and 67% - 81%
of the variation in C/f of black bullheads, largemouth bass, redfin shiners, and yellow
bullheads at lower reaches. Percent disturbance was often correlated with C/f of species
that were also correlated with percent silt. For example, percent disturbance and percent
silt were both positively correlated with C/f of green sunfish, largemouth bass, and
bluntnose minnows at mid reaches and C/f of black bullheads, redfin shiners, and yellow
bullheads at lower reaches (Table 8). Riparian area variables (i.e., rootwad, total woody
debris, bank root) explained 32% - 66% of the variation in C/f of central stonerollers,
creek chubs, and fathead minnows in headwater reaches and 55% - 92% of the variation
in C/f of central stonerollers, creek chubs, and redfin shiners in lower reaches. Riparian
area variables (i.e., total woody debris) were only correlated with C/f of creek chubs in
mid reaches. Hydrological (i.e., mean velocity) and stream morphological (i.e., mean
width) variables were significantly correlated with community indices and C/f of fishes
in trophic guilds and tolerance categories at lower reaches. Similar trends were found at

lower reaches with regards to C/f of species. For example, mean velocity explained 92%
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of the variation in C/f of white suckers and mean width explained 84% of the variation in
C/f of bluntnose minnows at lower reaches.

In riffle macrohabitats, 71% of all significant relationships were correlated with
percent gravel (Table 8). For example, percent gravel was positively correlated with C/f
of creek chubs and orangethroat darters in both mid and lower reaches. Catch per unit of
slender madtoms was negatively correlated with percent gravel, but was positively
correlated with larger substrate (i.e., cobble). Area of total woody debris explained 72%
- 79% of the variation in C/f of creek chubs in headwater and mid reaches, but was not a
significant variable for other species. Percent disturbance explained 88% of the variation
in C/f of orangethroat darters at headwater reaches.

Many of the individual species relations help explain the observed trends in C/f of
trophic guilds. For example, creek chubs were the dominant generalized-insectivore in
mid-reach pools; consequently, C/f of creek chubs and generalized-insectivores were
correlated with total woody debris and mean velocity (Tables 7 and 8). Percent
disturbance was significantly correlated with C/f of omnivores, bluntnose minnows, and
black bullheads in mid reaches where bluntnose minnows and black bullheads were the
most common omnivores. However, increased C/f of omnivores and tolerant species
with high percent disturbance or percent silt was also the result of species additions (i.e.,
yellow bullhead, golden shiner, mosquitofish, common carp). In mid-reach pools, the
insectivore-piscivore guild was primarily comprised of green sunfish, largemouth bass,
and bluegills. Whereas, in lower reaches, the insectivore-piscivore guild also included

channel catfish, orangespotted sunfish, walleye, white crappie, and various sunfish
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hybrids; thus, single-species relations in lower reaches may not reflect trends observed in
trophic guilds. In riffle macrohabitats, physicochemical variables correlated with C/f of
orangethroat darters were the same as those correlated with C/f of benthic-insectivore
(Tables 7 and 8)-indicating the dominance of orangethroat darters in the benthic-
insectivore guild.

Age and growth.—Age estimation and growth analysis were conducted on 1,071
central stonerollers, 883 creek chubs, 728 red shiners, and 625 green sunfish. Mean
back-calculated length at age was similar among reaches for all species (Figure 11).
However, mean back-calculated length at age 5 for green sunfish was significantly higher
in headwater reaches followed by mid and lower reaches (F = 32.10,df=2,5, P =
0.001).

Because fish used in age and growth analysis were not collected independent of
macrohabitat (i.e., pools and riffles), physicochemical habitat relations were determined
from the macrohabitat where C/f for the species was highest (i.e., pools). Riparian area
variables (i.e., canopy cover, bank root, rootwad, total woody debris, log, log complex)
explained 64% - 89% of the variation in growth (Table 9). For example, area of log
complex explained 71% of the variation in mean back-calculated length at age 1 of
central stonerollers at headwater reaches and variation in mean back-calculated length at
age 1 of creek chubs was best explained (89%) by area of rootwad at mid reaches.
Substrate type was also significantly correlated with growth, where large substrate was
correlated with increased growth. For example, mean back-calculated length at age 1 of

creek chubs was negatively correlated with percent silt, but positively correlated with
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percent pebble (Table 9). Biotic interactions influenced growth in lower reaches.

Growth of central stonerollers, creek chubs, red shiners, and green sunfish was negatively
correlated with C/f of each species in pool macrohabitats (» = -0.81 to -0.92, P = 0.02 to
0.09).

Most cyprinids are short lived and rarely live past age 2 (Pflieger 1997).
Consequently, 88% of the sampled central stonerollers, creek chubs, and red shiners were
< age 2 (Figure 12). Age structure was similar among reaches for central stoneroller,
creek chub, and green sunfish populations. However, the proportion of age-1 red shiners
was significantly greater in mid and lower reaches (F = 5.59,df =2, 9, P = 0.02).
Conversely, the proportion of age-2 red shiners was significantly greater in headwater
reaches (F=5.56,df=2,9, P =0.02).

The majority of the relationships among physicochemical variables and age
structure were weakly correlated (» < 0.60) and non-significant (P > 0.10). However,
percent boulder substrate in headwater reaches was negatively correlated to the
proportion of age-0 creek chubs (r =-0.99; P = 0.0001) and percent canopy cover was
negatively correlated with the proportion of age-0 central stonerollers (» =-0.91, P =
0.01). The proportion of age-0 central stonerollers in mid-reach sites was negatively
correlated with mean depth (» =-0.85, P =0.06). In lower reaches, the proportion of age-
0 central stonerollers was negatively correlated with percent boulder substrate (r = -0.86,
P =0.06) and the proportion of age-0 creek chubs was positively correlated with percent

silt (r = 0.90, P = 0.04).
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Discussion

Numerous researchers have documented a response in fish assemblage structure
and function with increasing habitat area, volume, and complexity (Sheldon 1968;
Gorman and Karr 1978; Schlosser 1982b). For example, Sheldon (1968) found that
species richness in a New York stream increased longitudinally and likely resulted from
increased habitat volume. Similarly, Gorman and Karr (1978) found that species
diversity was related to increased habitat diversity in Indiana and Panama streams. I
found that physicochemical habitat and fish community characteristics varied among
reaches, and patterns in longitudinal variation of fish assemblage characteristics are
similar to those documented for other ecosystems. Species richness, species diversity,
and trophic guild diversity increased longitudinally and was likely a function of habitat
area and volume.

Fish community characteristics in streams also vary by macrohabitat. Angermeier
and Schlosser (1989) found that species richness and fish densities were greater in pool
macrohabitats (versus riffles) in Minnesota and Panama streams due to increased habitat
volume. In addition, the authors suggested that prey availability in riffle macrohabitats is
generally limited to periphyton, aquatic macroinvertebrates, and other fishes; whereas,
additional prey such as terrestrial invertebrates and plant material are often available to
pool species. I found similar macrohabitat-specific patterns in tallgrass-prairie streams
where species richness, species diversity, trophic guild diversity, and abundance of fishes
were greatest in pool macrohabitats. Similar to Sheldon (1968), the observed

longitudinal and macrohabitat patterns in abundance of fishes in trophic guilds, tolerance
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categories, and species were usually the result of species additions rather than
replacement.

These data suggest that longitudinal patterns in instream habitat and fish
communities in streams on Fort Riley are similar to other lotic systems. However, within
reach (1.e., headwater, mid, lower) relations are not well understood-especially in
tallgrass-prairie ecosystems. With the effects of longitudinal variation removed, many of
the relationships within reaches were related to landscape-level conditions such as
disturbance in the watershed from military activity and riparian canopy cover.

Disturbance within the watershed from military activity was related to an increase
in silt in headwater reaches; however, silt was rarely correlated with fish community
characteristics. Gravel appeared to be important for fishes in headwater reaches.
Headwater reaches that had a lot of silt and little gravel or other large substrate generally
contained few species; however, a slight improvement in habitat heterogeneity (e.g.,
gravel) was related to the addition of new species—albeit tolerant species and trophic
generalists. Disturbance within mid-reach watersheds was important in determining the
structure and function of fish communities. Species diversity increased with disturbance
from military training, but species diversity does not reflect fish community composition.
Kushlan (1976) found that fish species diversity in Everglade marshes increased in
response to enhanced water-level stability. Although fish species diversity increased, the
fish community shifted from an assemblage of small omnivores to large piscivorous
species. On Fort Riley, increased species diversity was the result of the addition of

tolerant species and trophic generalists (e.g., yellow bullhead, golden shiner,
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mosquitofish, common carp). Disturbance in the watershed did not appear to directly
influence lower reaches. Most significant relationships in lower reaches were related to
stream morphology (e.g., mean width, mean depth) or hydrology (e.g., mean
velocity)-indicating that even on a relatively small-scale, species-area relationships may
be important in lower reaches (Angermeier and Schlosser 1989).

One of the impacts of military training at the landscape-level is disturbance to the
soil and vegetation. Several studies have documented deleterious changes in vegetation
abundance and species composition resulting from military tracked-vehicle disturbance
(Severinghaus and Goran 1981; McKeran 1984; Wilson 1988). Although few scientists
have studied the direct impact to soil and subsequent erosion from training maneuvers,
Wilson (1988) found that the amount of bare ground increased significantly with high
tracked-vehicle activity. Similar results have been documented on Fort Riley (B.
Rubenstein, Kansas State University, personal communication). The potential for
surface erosion is directly related to the amount of bare soil exposed to rainfall and
surface-water runoff (Chamberlin et al. 1991). If the infiltration capacity of the soil is
reduced through compaction or filling of pores by fine sediments, water runs over (rather
than through) the soil (Lull 1959; Chamberlin et al. 1991), causing higher peak flows and
increased sediment transport (Harr 1979). The influence of soil disturbance on streams
by large-machinery is well documented for forested salmonid streams (Greacen and
Sands 1980; Chamberlin et al. 1991). For example, Reid and Dunne (1984) found that
logging roads increased sediment input by 40% when exposed to intense traffic.

Furthermore;, the influence of soil disturbance is magnified in steep terrain (Smith and
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Wass 1980). In the Flint Hills, row-crop agriculture is minimal due to the steep slopes
and rocky soils (Metcalf 1966; Lauver 1994). The majority of the uplands in the Flint
Hills region are used for livestock grazing. Thus, many Flint Hills streams have low
amounts of silt. Conversely, military training on Fort Riley is usually conducted in the
upland areas which disturbs the soil and vegetation community.

Despite well-developed riparian zones on Fort Riley, it appears that these areas
are not “filtering” runoff from disturbed areas. Rabeni and Smale (1995) argued that
although slope, soil type, vegetation type, and geology are all important components of
riparian areas, continuity may be the most critical. They stated that riparian vegetation
must prevent the formation of rills, gullies, or other pathways which provide access of
silt to streams. As stated previously, many streams on Fort Riley are traversed by
maintained and unimproved tank-trails. These crossings likely provide avenues for silt to
enter streams and link landscape-level disturbance with instream processes. Although
this study was not designed to specifically address the locality of sediment input, it does
provide baseline information for further study.

Although riparian areas did not adequately reduce siltation in highly disturbed
watersheds, these areas are an integral component for stream ecosystem function in the
Flint Hills. As riparian canopy cover increased, fluctuations in daily temperature and
overall temperature decreased. This relationship may be especially important to
temperature-sensitive species. In addition, riparian vegetation influenced woody debris
input and provided instream cover for fishes. Fallen woody debris enhances the retention

of organic matter and inorganic sediments by forming debris dams (Speaker et al. 1984).
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Debris dams become sources of nutrients and provide substrate for aquatic organisms
(Triska et al. 1983; Benke et al. 1984) which decompose wood and form a major
component of trophic food webs in stream ecosystems. Furthermore, Nilsen and
Larimore (1973), Angermeier and Karr (1984), and Benke et al. (1984) suggested
instream woody debris is especially important in habitats with unstable or unproductive
substrate. Riparian vegetation is also important for stream ecosystems because it
enhances stream-bank stability, allochthonous energy input, and provides cover for fishes
(Platts 1983; Moring et al. 1985; Cummins et al. 1989). In addition, over-story
vegetation filters and absorbs solar radiation, thus affecting primary production and
stream temperatures (Lyford and Gregory 1975). Few studies have documented the
effects of canopy cover on prairie streams.

Information on the relationships between growth and physicochemical habitat in
small, lotic ecosystems is scarce. Those studies which have been conducted- have
focused on sport fishes (e.g., Putnam et al. 1995) or on the abundance o‘f juveniles, rather
than incremental growth (e.g., Schlosser 1985). Growth of many species was related to
either woody debris or substrate particle size. Creek chubs are a generalized-insectivore
which feed on a variety of aquatic macroinvertebrates (Dinsmore 1962; Pflieger 1997).
Thus, the growth of creek chubs may reflect the importance of woody debris as a source
of invertebrate prey. Similarly, increased growth of central stonerollers in headwater
reaches was correlated to the amount of log-complex habitat. Central stonerollers are
herbivore-detritivores and feed primarily on attached periphyton (Kraatz 1923; Pflieger

1997). Woody debris may serve as a surrogate substrate for primary production because
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of the lack of suitable substrate for periphyton attachment in headwater streams on Fort
Riley. Growth of green sunfish decreased with larger substrate during early life stages in
mid reaches; however, growth of older fish was directly related to the amount of woody
debris. These data likely represent the ontogenetic shift in diet from macroinvertebrates
to fishes (Pflieger 1997). Woody debris may attract prey fish, but may also serve as
ambush areas—especially in the absence of aquatic vegetation.

The proportion of age-0 fish was generally greatest in areas with little overhead
canopy cover, shallow depths, and smaller substrate particle size. For example, many
sites (primarily in headwater reaches) that had low amounts of gravel and other rocky
substrates generally had a high proportion of age-0 creek chubs and central stonerollers.
The presence of age-0 fish in habitat unsuitable for spawning adults may be a function of
age-0 fish acting as colonizers. As fish mature it is possible that many move to more
suitable habitats (e.g., higher velocity areas for larger central stonerollers, larger pools
for creek chubs). It is likely that fish remain in these areas and high mortality limits the
abundance of adults. Schlosser (1982b) found that shallow, temporally variable areas in
an [llinois stream were dominated by young age groups, suggesting the importance of
environmental stability.

Numerous authors have alluded to the influence of density-dependent competition
on growth of fishes; however, most studies have been conducted in lentic systems
(LeCren 1958; Grice 1959) or large rivers (Legget 1977, Bayley 1988), rather than small,
lotic ecosystems. This is likely due to the paucity of research regarding incremental

growth rates of small stream fishes. In streams on Fort Riley, growth of central
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stonerollers, creek chubs, red shiners, and green sunfish was negatively correlated with
their abundance in lower reaches. Despite the rarity of biotic relationships in most
reaches, the apparent density-dependent regulation of growth further suggests the
importance of deterministic processes in lower stream reaches (Grossman et al. 1982;
Herbold 1984; Rahel et al. 1984; Yant et al. 1984; Schlosser 1985). Although this
hypothesis has yet to be tested in tallgrass-prairie streams, it does provide a framework
for future community and species-specific research in prairie ecosystems.

The results of this study suggest the importance of landscape-level disturbance on
physicochemical habitat and fish community characteristics, and have implications
beyond military training activities. Urban development, timber-harvest practices,
mining, and agriculture have been shown to increase the amount of sediment in stream
ecosystems by exposing and compacting the soil (Waters 1995). I surmise that military
training activities influence sedimentation of streams in a similar manner. This study
also suggests :[he importance of riparian continuity. Although riparian areas filter
sediment and decrease surface runoff, I found that improved and unimproved stream
crossings disrupt riparian continuity and likely provide access of silt to streams. Thus,
riparian continuity may be an integral component of stream ecosystems that is often

overlooked in natural resource management and land-use planning.
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Research Needs
Determine point and non-point sources of sediment input and document temporal
variation in sediment transport.
Determine the influence of improved and unimproved stream crossings and the
proximity of training to streams on sedimentation processes. Examine the use of
mitigation techniques (e.g., runoff deflectors along roadsides) and their role in
decreasing sediment input to streams. Document the effects of discontinuous
riparian vegetation on sedimentation processes.
Document spatial and temporal changes in physicochemical habitat in streams
associated with small impoundments. Determine the influence of small
impoundments on recolonization of streams and their influence on fish and
invertebrate communities.
Assess the role of large water bodies (i.e., Milford Reservoir, Kansas River) on
recolonization and fish community characteristics in streams.
Identify spatial and temporal variation in aquatic invertebrate (e.g., aquatic
macroinvertebrates, mollusks) species composition and abundance. Assess the
influence of sediment input on habitat availability and aquatic invertebrate
communities.
Identify the factors that determine the presence or absence of Topeka shiners.
Determine the influence of predators (e.g., largemouth bass, green sunfish) and
competitors (e.g., red shiners) on the abundance of Topeka shiners.

Determine the influence of largemouth bass and bluegills on fish communities.
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Document food habitats, age structure, growth, and mortality of largemouth bass

and bluegills in streams.
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